作为一种新型有机塑晶压卡材料体系,碳硼烷(C2B10H12)包括三种位置异构体:邻碳硼烷(ortho-carborane)、间碳硼烷(meta-carborane)和对碳硼烷(para-carborane)。 这类材料均在室温附近发生由正交相到四方相的结构转变。与目前已报道的有机塑晶压卡材料相比,该体系体现出显著的综合性能优势(如图1所示):单位压力变化导致的熵变大、相变温度对压力极为敏感、热滞小。同时,它们的压卡性能与三种材料的分子构型有关,对碳硼烷的性能最优,其在30 MPa的小压力下,最大熵变可达106.2 J kg-1 K-1。与北京高压科学研究中心李阔研究员合作,直接测量得到约10 K的绝热温变。该研究不仅表明碳硼烷体系是一类很有前途的室温压卡制冷材料,而且表明精细调节分子构型是提高压卡性能的有效策略。
NH4I是一类无机塑晶材料,在268 K附近发生简单立方相到面心立方相的结构相变。利用高压微量热仪对NH4I 在高压条件下的等温熵变进行测量,发现该材料在40 MPa下可实现71 J kg-1 K-1的可逆等温熵变。同时,该材料的相变对压力极为敏感,相变温度随压力的变化速率dTt/dP高达0.79 K MPa-1,远高于其他压卡材料,如图2所示。对压力响应敏感的特性使得在80 MPa下可获得高达41 K的超宽工作温区,具有广泛的应用前景。为了揭示NH4I对压力极为敏感的物理根源,与中国科学院高能物理研究所童欣研究员团队和澳大利亚核科技组织(ANSTO)Dehong Yu博士合作,利用冷中子飞行时间谱仪Pelican,对NH4I中的NH4+再取向旋转动力学和晶格动力学进行了系统研究,发现该材料中存在极强的分子取向无序-晶格振动耦合。施加压力导致光学声子硬化,增强了NH4+与I-间的氢键相互作用,从而抑制了NH4+分子取向无序运动,最终诱发结构相变产生压卡效应。这一分子取向无序-晶格振动的强烈耦合是NH4I具有极高压力敏感性的本质原因。
该系列工作得到了国家重点研发计划(2020YFA040600)、中国科学院前沿科学重点研究计划“从0到1”项目(ZDBS-LY-JSC002)、中国科学院国际伙伴计划项目(174321KYSB20200008)、中国科学院建制化研究项目、国家自然科学基金项目(11804346)、辽宁省“兴辽英才计划”项目(XLYC1807122)、沈阳市中青年科技人才支持计划(RC210432)和中国博士后基金项目(2021M693229)的资助,也得到了ANSTO(P8268、P8318)的大科学装置机时支持。
全文链接1:DOI:10.1002/adfm.202112622
全文链接2:DOI: 10.1038/s41467-022-29997-9
图1. 碳硼烷体系与主要有机塑晶压卡材料的性能对比雷达图
图2. 各类压卡材料的性能对比,包括相变温度的压力敏感性、饱和压力和单位压力导致的熵变
院地合作